Autumn Term 2

P1 Conservation and dissipation of energy

Achieving excellence together

Aiming for Grade 8

Extended Homework Assignment

Name: _____

Set: _____

Instructions

A printed copy should be handed into your teacher.

The knowledge required to complete this assignment will be supported in class in lessons of the half term.

Power and efficiency

Light bulb technology has improved considerably over the last 20 years. You may have noticed how many objects, like traffic lights, now use LEDs.

A Look at the table that shows the total power input of three different types of light bulb required to produce different light intensities. Present this data on a suitable graph.

Light intensity in lumens	Power of incandescent light lamp in W	Power of CFL (energy saving) light lamp in W	Power of LED light in W
450	40	10	7.5
800	60	15	10.0
1400	75	20	14.0
1800	100	25	18.0
2800	150	45	16.0

B Incandescent light bulbs are about 10% efficient. Use the information in the table to estimate the efficiency of CFL and LED lamps.

Questions

Energy conservation and calculations

 List the different types of energy store, and ways of transferring energy between stores.

			(2 marks)
2	а	Describe what we mean by 'work' in science.	
			(1 mark)
	b	Explain why when you lift an object the work done is equal to the change in gravitational potential energy, but when you push an object across a desk it is not.	
			(6 marks)

3	а	Compare the <i>final energy stores</i> between a ball which is dropped above the floor and bounces back to a portion of its original height, and another ball which is dropped and makes a crater in the sand below.	
			(3 marks)
	b	Compare the <i>work done</i> , both for the ball which is dropped above the floor and bounces back to a portion of its original height, and for the other ball which is dropped and makes a crater in the sand below.	
			(6 marks)
4	а	Explain how to calculate the speed of a ball just before it hits the ground if it is dropped from a height of 1 m, stating any assumptions that you make.	
			(3 marks)
	b	Use your answer to part a to explain why the speed of a falling object does not depend on mass.	
			(1 mark)
	С	State whether, in reality, the speed of the ball will be greater than, less than, or the same as the speed calculated and explain why.	
			(2 marks)

- 5 A student drops a spring onto the ground and the spring compresses. The mass of the spring is 0.25 kg and the spring constant of the spring is 1 kN/m.
 - **a** Complete the table. You will need to use the equation:

	elastic potential energy (E_e) = $\frac{1}{2} \times \text{spring constant } (k) \times \text{extension}^2 (e^2).$ (3 marks)				
	Height dropped from in m	Gravitational potential energy, <i>E</i> e in J	Elastic potential energy, <i>E</i> _e in J	Compression of spring in m	
	1.00				
	0.50				
	0.25				
b	State an assumption t	hat you have made.			
				(1 mark)	
Mode	lling energy transfer a	nd dissipation			
		ome energy ends up in the	surroundings.		
а	-	that transfer energy to the s	-		
	••••••				
				(2 marks)	
b	Explain why energy tr	ansferred to the surroundin	gs is 'dissipated'.		
	(1 mark)				
С					
	of a car that takes you to school is eventually dissipated.				
	r and efficiency				
	-	that you can use to calcula	ate power.		
	-		ate power.		
	rite down two equations				
7 W	rite down two equations			(2 marks)	
7 W	rite down two equations Complete the table by	calculating the power.		(2 marks) (2 marks)	
7 W	rite down two equations Complete the table by Device shower	calculating the power.	Time	(2 marks) (2 marks)	
7 W	rite down two equations Complete the table by Device	calculating the power. Energy in kJ 60	Time 1 minute	(2 marks) (2 marks)	

b Complete the table and calculate the efficiency.

9

	Device	Useful energy in J	Wasted energy in J	Total energy in J	Efficiency
	light bulb	5		25	
	kettle		500	2000	
	television	2500	2500		
	car	100		400	
t .ool a (i	he table. k at the graph Consider an in ntensity of 140	that you plotted for Part candescent light bulb, 0	CFL, and LED that all pr escent light bulb is 10%	ovide a light	(2 marks)
		explain an assumption t the efficiencies of the o	hat you can make in orc other two lamps.	ler to be able	(2 marks)
i	i Calculate t	he efficiency of a CFL.			(2 marks)
i					(2 marks)
					(2 marks)
: :	Suggest and e	xplain a link between th	e graph and the efficien	cy of each lamp.	

 (3 marks)